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Experiments conducted at all combinations of the levels of two or more factors are called
factorial experiments. Factorial experiments have been shown to be more efficient in
exploring the effects of external factors on a response variable than non-factorial
arrangements of factor levels. This paper presents a methodology for the analysis of test
results obtained at all combinations of the levels of two two-level factors. The response
variable is assumed to follow the two parameter Weibull distribution with a shape
parameter that, although unknown, does not vary with the factor levels. The scale
parameter on the other hand may vary in various ways with the levels of the factors. These
assumptions well reflect the behavior of the fracture strength of glassy polymers as it is
influenced by factors such as water sorption and silanation of filler. The purpose of the
analysis is (1) to compute interval estimates of the common shape parameter and (2) to
assess whether either factor singly or in combination with the other affects the Weibull
scale parameter. The procedure is illustrated with an example using simulated data for
which only one of the factors had a real effect. A further example is given using shear
strength measurements made in a 22 factorial experiment conducted on a glassy polymer
material used in dental restorations. © 71999 Kluwer Academic Publishers

1. Introduction in [7]. A primary purpose of this paper is to introduce
The two-parameter Weibull distribution was first usedto the community of materials scientists a new, statis-
to model the random variation of fracture strength oftically valid and powerful methodology for the design
brittle materials by Weibull himself [1]. Subsequently it and analysis of fracture experiments.

has been extensively used to model the fracture strength

of ceramics, polymers and glasses. Much of this work

suggests that while external factors may have an effe@. The model

on the Weibull scale parameter they generally have lit-The statement that the fracture strength of a population
tle or no effect on the shape parameter. In the presensf items operating under a specified set of conditions
paper we examine the combined effect of two factors ofollows the two parameter Weibull model implies that

fracture strength. The factors can be qualitative such aghe probability that the strength of a randomly selected

the presence or absence of some ingredient, or wheth@em does not exceed a value s expressible as:
the specimen was or was not immersed in fluid. They

may be quantitative such as the ambient temperature or B
S X

humidity. P[strength<x] = F(x) = 1 — exp|:—<—) } (1)

Factorial experiments have an advantage in efficiency n
over experiments in which arbitrary combinations of
levels are used [2]. Analysis methods for factorial testss is known as the shape parameter gritie scale pa-
with exponential response were developed in [3, 4]. Itrameter or characteristic strength. Both are positive.
was shown in [3] that the methodology was not robust A useful property of Weibull distributed random vari-
if the data were actually from a Weibull population. ablesisthatwhenthey are multiplicatively transformed,
This paper presents methodology for analyzing such.e., byy = cx, the distribution of the transformed vari-
experiments to determine whether neither, one, or botabley remains Weibull with the same shape parameter
factors have a significant influence on a Weibull dis-but with a scale parameter of.
tributed random variable such as fracture strength. Itis In applying the Weibull model to fracture experi-
an adaptation to the context of fracture tests of resultsnents we assume thgtdoes not vary with the level
presentedin [5, 6] and applied to rolling contact fatigueof external factors. As noted above this is consistent
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with assuming that the external factors serve to increase 1

or decrease the scale parametdsy a multiplicative by

amount. Specifically, if factoA has ‘a” levels and fac- 1 1
tor B has ‘b” levels, the strength distribution at the con- Cl1= — =Copp= —
ditions corresponding to levelof factor A and levelj Ci12 C21

of factorB is: . . . -
Equating the numerical values®f to their multiplica-

% \ B tive expressions gives:
F(X)=1—exp| — (—) (2)

i nm1 = abiciv/12 =2

One may think of the levels of factoh as forming N2 = & i\/1_2= 4
the rows and the levels of fact@ the columns of a by cn
two-way table or layout. by

The scale parametefj may now be expressed in 21 = acry Vi2=3
terms of a multiplicative row effec; due to theith ¢
level of factor A, a column effect; due to thejth N22 = L J/12=6
level of factorB and, an interaction effect; due to the aiby

articular synergy of row and columnj, i.e., .
P ynergy I The solutions are:

n is a base level scale parameter value. Introducing the by =/1/2, by=+/2

additional constraints:
Cl1=Ci2=Cn=0Cp=10

H a=1 (4) Inthis instance multiplicative row and column factors
i=1 sufficed to account for all thg; values. The cell spe-
b cific ¢;j values were all unity. For the values in the table
1‘[ by =1 (5) above it may be said that “interaction” is absent.
=1 In general ifc;; is unity for alli and j, we say that
interaction does not occur. When interaction is absent
and the data may be ‘explained’ by the simpler ‘reduced’
model wherein:

a b
[[ei=]]ci=1 (6) ny=abny (=1...aj=1....b (8

Similarly if, in addition, factorB has no effecty;; may
serves to defing as the geometric mean of the cell be written:
scale parameter values taken over all the cells; i.e.,

nj=n=an (@(=1...,a) (9)
b a 1/ab
= |:H H”il} (7)  While if factor A has no effect:
j=1li=1

_ , mj=n;=bjn;, (j=1...,b) (10)
Thus, for example, given the following>22 table of

scale parameter values: Finally, if there are no row, column or interaction effects
the model simply reduces to:

nm=2 mz=4 nij =7 (11)

na1=3 n2e=~56

3. Fracture tests
A fracture test is presumed to be conducted for each
combination of factor levels. For simplicity we take the
14 sample sizen to be the same for each cell in thex b
n=(2x4x3x6)" =112 array. Thenitems are presumed to be tested untilrtie
(r < n) smallest fracture strength in the sample occurs
From the constraints: and that the remaining—r specimens do not fracture.
Generally = nin fracture tests. Life tests on the other
1 hand are often censored & n). The total sample size

a=— . . X
2 a is thusabn and the number of failed specimensls .

We have,
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TABLE | ML estimation equations for factorial experiments under various models

Model ML shape parameter found by solving Equationﬂf;r )
1 s, 1@&AT
ij =aibjGj == — =0 vij /1
Nij iGin . abr abi=1lz=;vij ij/
1 s, 1& & T
7ij =aibin ~+ =T =0 kvj v j /abr
(;:bzlz) B2 abr k;jzﬂvilvlj iV
a b vij
k=
< ;;UM},J)
b . b
1 s 3 j=1 Tij
nij=an ~—+——-a ( b =0 vjj /br
Bs  abr .=Zl 11 Vij J2=:1
1. s o\ (Y T a
nij =bjn e ( = )=0 vij/ar
ij =Dbj pa  abr ];I. Yorp vij ;”
1 5 a b a b a b
= o tan 22T ) 22w =0 > iy /abr
i=1j=1 i=1j=1 i=1j=1

When the observed strengths within each cell are sortedlso listed in Table I is the expression for the maximum

from low to high thekth ordered value is denoted}j).  likelihood estimate of the cell scale parameters raised
to a power equal to the shape parameter estimate ap-
propriate to that model. Thus, for example, to estimate

4. Estimation nij under the last model of Table I, one computes:
In [5] the method of maximum likelihood is applied to

estimate the shape parameter and effects under each of a b 1/Bs

the four models described by Equations 3 and 8-11. fij = Z Z v} /abr (19)
The corresponding shape parameter estimates are de- iz1j=1

noted 31 to Bs respectively. For model number 2,
and the estimates of the effeetsandb; mustgenerally  Except for model 2, the shape parameter estimates ob-
be found by the simultaneous solutioreof b+ 1non-  tained under the other models are special cases of the
linear equations. However, for the special case of thghape parameter estimate applicablektgroups of
2 x 2 layout @=b=2) B, may be solved separately weibull data under the assumption that the shape pa-
and then the effect estimates CompUtEd Inwhat fO”OW$ameter is the same for all groups. This estimate was
we restrict consideration to the case whareb=2.  first discussed in [8] for the cade=2. It was gener-
The estimates of the scale parametgysare obtained  alized in [9] and elaborated upon in the context of the
by multiplying the relevant effect estimates and the esanalysis of rolling contact fatigue experiments in [10].
timate of the base level scale parameter. B, for example, is the estimate gfobtained when
Table | lists the equations for estimatiig to Bs.  each of the cells | in the data array is taken as a group.
The auxiliary quantities used in this table are definedn this case = ab. ﬁ3 results when eactow is taken

as follows: as a group, i.e., the columns are collapsed. In this case
noo k=a. Correspondinglyﬂ4 is obtained by collapsing
vij = Z xﬁ(k) (12) rows and treating the data in eacblumnas a group.
1 This givesk =b. 85 results when all of the data in the
b 1/b array are treated as a single large group, ke:1.0.
v, = 1_[ Uij} (13)
J:

a 1/a 5. Test for appropriate model
S 1—[ - (14) The full model given by Equation 3 is the least restric-
J ' tive. Under this modet;; is estimated using only the
1/ab data in the celli¢ j) along with the common shape
parameter estimatg; obtained using all of the data
Vij } (15)  inthe entire array. Succeeding models are successively

=1j=1 more restrictive with the last model; = n represent-
SN ing the case where the entire samplalh = 4n items
Tij = D Xl In Xije (16)  come from a single Weibull population. When a restric-
k=1 tive model is inappropriate, a consequence is that the
! shape parameter estimated under that model will tend
Sj = Z In Xijqo (A7) o be smaller than it is when an appropriate model is
k=1 used.
a b Itis shown in [5] that one may use the ratio of shape
s = Z Z Sij (18) parameter estimates as the basis for a test of whether
i=1j=1 a more restrictive model is tenable. For example, if
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interaction is absenf1/f2 should be about unity. If These latter values are used for setting confidence limits
interaction is present howeves, will be relatively — onthe shape paramefgas in [9]. For 90% confidence
smaller tham3; and the ratig3; /B, will therefore tend  limits one uses:
to be larger than unity. R R
In the language of hypothesis testing, our so called B/vogs < B < B/voos (22)
null hypothesis would be that interaction is absent, i.e.,
A median unbiased estimate of the common shape pa-

Ho:cij = 1.0 (alli, j) rameter may be computed as:
This hypothesis would be rejected with significance p" = B/voso (23)
levela =0.05 if

. .. . 7. Discriminating power of the tests for row,
B1/B2 > (B1/B2)1-« = (B1/B2)oss  (20) column and interaction effects
o Additional Monte Carlo studies were performed to eval-

(B1/B2)o.os represents the upper 95th percentile of theuate the ability of the methodology discussed above to
distribution of the ratio £1/52) applicable when the detect real effects. It is shown in [5] that in the ab-
hypothesis is true. It serves as a measure of the relativsence of interaction effects the probability of detecting
rarity of largerp1/ B ratios. Only 5% of the time willa  a row effect of magnitude; (with a, = 1/a;) increases
larger value be encountered due to chance alone whegith the magnitude o&f. Simulations were run with
interaction is absent. If we encounter a larger value wgy =r =3 andn=r = 10 using various choices @
proclaim that interaction exists and tolerate a 5% riskand settingy,1 = n1,=ai and n,1 =n,=1/a;. The

that our proclamation is wrong. If the hypothesis of probability of failing to detect an effect of magnitude
no interaction were accepted one could proceed to teg}; using a significance level=0.10 is shown in Fig. 1
B1/ B3 to see if the column effects are also negligible. o¢ 5 function o‘af. Fig. 2 is a comparable plot giving
the probability of failing to detect an interaction effect
of magnitudec;; as a function oi:fl. It is seen that
6. Monte Carlo results an interaction effect is more likely to be detected than
Monte Carlo simulation was used to produce 10,000, row (or column) effect of comparable size. These
simulated 2« 2 factorial experiments in which the data figyres show that 2 2 factorial tests witm (andr)
in all cells were drawn from a common Weibull popula- a5 small as 10 are quite sensitive for brittle materials
tion. This was done for values of sample siz&nd cen-  \yherein the shape paramefgis typically large. For
soring number ranging fromn=r =2ton=r =10.  example withg = 10, a multiplicative factor as small as

For each simulated experiment the valfigs- Bswere 4, — 1.04 will be detected with a probability of about
computed using the equations in Table I. The ratios 0g504, (1.04°=1.5).

B1 to the other values of were calculated for each
experiment and sorted from low to high to determine
the percentiles. 8. Numerical examples
Table Il lists the upper 90, 95 and 99% points of thesery jllustrate the analysis on data which are known to
ratios along with the 5, 10, 50, 90 and 95% points of conform to its inherent assumptions, & 2 array was
developed using simulation. Two uncensored samples

v=B1/B (21) of sizen=5 were generated from a Weibull population

TABLE Il Selected percentage points of the distributifags andf1/Bk (k=2-5)

B1/8 B1/B2 B1/B3andp1/Ba B1/Bs

n r 0.05 0.10 0.50 0.90 0.95 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

2 2 0.944 1.069 1.764 3.284 4.019 1.742 2.060 3.160 2.066 2.439 3.729 2.417 2.889 4.538
3 3 0.870 0.960 1.357 2.068 2.362 1.307 1.437 1.762 1.437 1.599 1.942 1.601 1.782 2.220
4 2 0.861 0.979 1.610 3.015 3.690 1.741 2.063 3.132 2.078 2.440 3.701 2.420 2.879 4.412
4 4 0.857 0.929 1.238 1.705 1.903 1.184 1.261 1.461 1.285 1.365 1.576 1.378 1.481 1.714
5 3 0.755 0.832 1.181 1.801 2.049 1.290 1.417 1.726 1.438 1.575 1.912 1.575 1.745 2.169
5 5 0.859 0.920 1.179 1.549 1.683 1.131 1.186 1.305 1.209 1.270 1.417 1.277 1.346 1.522
6 3 0.735 0.810 1.151 1.755 1.997 1.288 1.413 1.722 1.437 1.574 1.906 1.568 1.740 2.165
6 6 0.857 0.913 1.140 1.455 1.560 1.100 1.141 1.236 1.161 1.208 1.322 1.214 1.267 1.396
7 3 0.722 0.796 1.131 1.727 1.967 1.288 1.412 1.721 1.435 1.571 1.904 1.566 1.737 2.153
7 7 0.862 0.912 1.114 1.392 1.489 1.082 1.120 1.212 1.134 1.176 1.272 1.180 1.227 1.339
8 4 0.689 0.745 0.997 1.380 1.538 1.171 1.235 1.421 1.263 1.339 1.529 1.348 1.441 1.655
8 8 0.867 0.911 1.099 1.345 1.433 1.071 1.099 1.164 1.112 1.144 1.219 1.149 1.189 1.273
9 4 0.678 0.733 0.980 1.359 1.515 1.170 1.235 1.418 1.262 1.337 1.527 1.347 1.440 1.655
9 9 0.872 0.911 1.088 1.317 1.391 1.061 1.089 1.149 1.099 1.130 1.199 1.131 1.165 1.243
10 5 0.663 0.710 0.914 1.207 1.318 1.118 1.163 1.272 1.188 1.242 1.371 1.251 1.313 1.462
10 10 0.873 0.913 1.076 1.285 1.353 1.053 1.073 1.125 1.085 1.112 1.169 1.115 1.144 1.215
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havingn =2 andg = 2. These data were used to form In terms of the model these data represent the case
the first row of the 2 2 layout. Two further samples where the base scale parametet 1, there is a row

of sizen =5 were drawn from the Weibull population effecta; =2 anda, = 1/2 but no column or interaction
havingn = 1/2 andg = 2 to form the second row. The effect oy =by=c;=1).

sorted data are tabled below: The computed estimates of the shape parameter are
listed below:
0.6297 1.021 ,él — 2358
0.7960 1.107 .
0.9468 1.502 B2 =2.325
2.208 1.945 R
2.147  2.727 B3 =2.222
0.1117 0.1999 pa = 1362

0.2361 0.3451
0.3038 0.6332

0.3310 0.7275 A
0.6333 0.7447 Theratios31/ Bk are tabled below fdt = 2—5, along

with the associateg values as estimated from the

Bs = 1.354
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tabular Monte Carlo distributions of the various ratiosparameter is computed using Equation 23 and the me-
as determined under the null hypothesis. dian valueygso, of B1/8 listed in Table Il as:

BY =2.358/1.179= 2.0

Effect Shape parameter ratio P It is seen that in an unusual coincidence, the median
unbiased estimate is exactly equal to the true valye of

Interaction B1/B2=1.014 0.59 As a second example of the methodology we will

Column f1/Bs=1.061 0.50 analyze a % 2 experiment in which the shear strengths

of ten specimens of a polymer material used in dental
restorations were measured at all four combinations of
the levels of two factors. The material is a 60 : 40 mix of
bisphenol A glycidyl methacrylate: triethylene glycol
dimethacrylate containing 3 vol % of OX50 colloidal
silica (Degussa) used as filler. The factors represented
Itis seenthatthe analysis has correctly detected the I’O‘(\ﬂ_) the presence and absence of silanation (a treatment
effect and, also, correctly failed to show a significantdesigned to bond the silica filler to the polymer matrix)
column or interaction effect. The ratio for “ALL" will  and (2) whether or not the specimens had been soaked
react to all significant effects. The fact that its magni-to saturation in a 50 : 50 mixture of ethanol and water.
tude is close to the magnitude of the ratio for the rowThe shear strengths in megapascals (MPa) are listed

effect further reflects that only the row effect is sig- pelow for each combination of the factor levels.
nificant. The estimated parameters assuming only row

effects are meaningful are:

Row B1/Ba=1731 <0.01
Al B1/Bs=1.741 <0.01

Soaked Unsoaked
a;=1/a,=1847, 7 =09082 B =2358 18.9709 36.7600
19.5638 38.5300
A 90% confidence interval fg# may be estimated from 20.1566 40.9100
Equation 22 using the percentage pointg ofs listed 20.1566 41.5000
in Table II. Silanated 20.7495 42.6800
21.3423 43.2800
22.5280 43.2800
1.40=2.358/1.683 < B < 2.358/0.859= 2.75 995280 43.8700
22.5280 43.8700
It is noted that this interval includes the true value 23.1208 44.4600

B=2.0. A median unbiased estimate of the shape

99

95

90 « Untreated
80 Soaked
70

60 . Silanated

50
40

30
20

Soak & and Sila

Probability of Fracture

1§13
o

10

10 20 30 40 50 60 70

Shear Strength, MPa

Figure 3 BISGMA with soaking and silanation.
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Soaked Unsoaked Upper percentage points
Shape parameter

14.2282 53.9486 estimates ratio 0.10 0.05 0.01

14.2282 55.7271

14.8210 56.9128  B1/B,=2.96 1.053 1.073 1.1125

15.4139 58.0985  B,/B3=8.17 1.085 1.112 1.1171
Unsilanated 15.4139 58.6913 31/34:2.96 1.085 1.112 1.1171

16.0067 59.8770 g /8:=9013 1.115 1.114 1.215

16.0067 62.8412

16.5996 64.0269

16.5996 64.0269 Aa e . .

17.192 66.3983 B1/B2is significantindicating that the interaction effect

is real. The interpretation is that the effect of soaking
is greater with unsilanated material than with silanated.
Thatis, silanation acts to diminish the deleterious effect
o i ) i ) of soaking. When the data exhibit a significant interac-
The validity of the analysis described in this paper de+ion effect the other tests become irrelevant. Each cell
pends upon the premise that the data within each cell ihe matrix must be separately estimated subject to
are drawn from Weibull populations having a commony, commonality of the shape parameter. The shape pa-
shape parameter. Fig. 3 shows the data within each Cerlémeter used to test for a column eﬁe&g, is reduced
plotted on coordinates for which Weibull distributed ;, magnitude both by the column effect and the inter-
data are expected to plotas an approximate straightling,(ion effect if there is one. Likewise the row effect
Visually these Weibull “plots” support the assumption shape parameter is reduced in magnitude both by the
that the data follow the two parameter Weibull distri- jnteraction effect and the actual row effect if any. From
butions. _ the table above the shape parameter ratio for testing the
A formal test of the commonality of the shape para-rq effect is numerically about the same (2.96) as the
meters may be based on the ratio of the largest anfhis for the interaction indicating that the row effect
smallest among the four ML shape parameter estimategsq | is not large. Adopting model 1 as the most appro-

computed from the data within each cell. The individ- yrate characterization of the data, the estimated effects
ual maximum likelihood shape parameter estimates argq calculated to be:

tabled below in the positions corresponding to the data
table above. 5 = 31086

4; =0983 4&,=1017

=179 p=254 by = 0603 b, =166
€11 =6,=118 €=y =0.847

Using these factor estimates the overall shape parameter
estimates for each cell may be computed to be:

The ratio of the largest to smallest among these four
shape parameter estimateg i/ Bmin = 25.4/17.1=

1.49. Under the assumption théis common to all the Soaked Unsoaked
cells, Bmax/ Bmin Will follow the distribution discussed | . R
in[11] withn=r = 10 anck = 4. Using tables givenin Sllanated n11=2184 N12=428

[12] the probability of a ratio larger than 1.49 is found Non-silanated n21=161 N22=621
to be about 0.85. There is thus no evidence to suggest
that the shape parameter varies from cell-to-cell.

The five estimates of the shape parameter obtainedsing the values in Table Il far=r = 10, gives using
under the five models were computed to be as followsEquation 22, the following 90% confidence limits fér

3, = 19,018 _ 1902 1902
/?1 14.06 = 1353 < B < 873" 2179
B2 =6.421 ] _ _ _ _
Using Equation 23 the median unbiased estimate of the
Bs = 2.327 common shape parameter is:
Ba = 6.419 2 _ 1902 177
s = 2.111 1.076

Itis seen that the procedure has determined the Weibull
The various ratios and the upper 0.01, 0.05, and 0.18hape parameter to within a narrow range of uncertainty
points of their null distribution are tabled below: because all 40 data points contribute to its estimation.
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