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Experiments conducted at all combinations of the levels of two or more factors are called
factorial experiments. Factorial experiments have been shown to be more efficient in
exploring the effects of external factors on a response variable than non-factorial
arrangements of factor levels. This paper presents a methodology for the analysis of test
results obtained at all combinations of the levels of two two-level factors. The response
variable is assumed to follow the two parameter Weibull distribution with a shape
parameter that, although unknown, does not vary with the factor levels. The scale
parameter on the other hand may vary in various ways with the levels of the factors. These
assumptions well reflect the behavior of the fracture strength of glassy polymers as it is
influenced by factors such as water sorption and silanation of filler. The purpose of the
analysis is (1) to compute interval estimates of the common shape parameter and (2) to
assess whether either factor singly or in combination with the other affects the Weibull
scale parameter. The procedure is illustrated with an example using simulated data for
which only one of the factors had a real effect. A further example is given using shear
strength measurements made in a 22 factorial experiment conducted on a glassy polymer
material used in dental restorations. C© 1999 Kluwer Academic Publishers

1. Introduction
The two-parameter Weibull distribution was first used
to model the random variation of fracture strength of
brittle materials by Weibull himself [1]. Subsequently it
has been extensively used to model the fracture strength
of ceramics, polymers and glasses. Much of this work
suggests that while external factors may have an effect
on the Weibull scale parameter they generally have lit-
tle or no effect on the shape parameter. In the present
paper we examine the combined effect of two factors on
fracture strength. The factors can be qualitative such as
the presence or absence of some ingredient, or whether
the specimen was or was not immersed in fluid. They
may be quantitative such as the ambient temperature or
humidity.

Factorial experiments have an advantage in efficiency
over experiments in which arbitrary combinations of
levels are used [2]. Analysis methods for factorial tests
with exponential response were developed in [3, 4]. It
was shown in [3] that the methodology was not robust
if the data were actually from a Weibull population.
This paper presents methodology for analyzing such
experiments to determine whether neither, one, or both
factors have a significant influence on a Weibull dis-
tributed random variable such as fracture strength. It is
an adaptation to the context of fracture tests of results
presented in [5, 6] and applied to rolling contact fatigue

in [7]. A primary purpose of this paper is to introduce
to the community of materials scientists a new, statis-
tically valid and powerful methodology for the design
and analysis of fracture experiments.

2. The model
The statement that the fracture strength of a population
of items operating under a specified set of conditions
follows the two parameter Weibull model implies that
the probability that the strength of a randomly selected
item does not exceed a value ‘x ’ is expressible as:

P[strength<x ] = F(x) = 1− exp

[
−
(

x

η

)β]
(1)

β is known as the shape parameter andη the scale pa-
rameter or characteristic strength. Both are positive.

A useful property of Weibull distributed random vari-
ables is that when they are multiplicatively transformed,
i.e., byy = cx , the distribution of the transformed vari-
abley remains Weibull with the same shape parameter
but with a scale parameter ofcη.

In applying the Weibull model to fracture experi-
ments we assume thatβ does not vary with the level
of external factors. As noted above this is consistent
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with assuming that the external factors serve to increase
or decrease the scale parameterη by a multiplicative
amount. Specifically, if factorA has “a” levels and fac-
tor B has “b” levels, the strength distribution at the con-
ditions corresponding to leveli of factor A and levelj
of factor B is:

F(x) = 1− exp

[
−
(

x

ηi j

)β]
(2)

One may think of the levels of factorA as forming
the rows and the levels of factorB the columns of a
two-way table or layout.

The scale parameterηi j may now be expressed in
terms of a multiplicative row effectai due to thei th
level of factor A, a column effectb j due to the j th
level of factorB and, an interaction effectci j due to the
particular synergy of rowi and columnj , i.e.,

ηi j = ai b j ci jη; (i = 1, . . . , a, j = 1, . . . , b) (3)

η is a base level scale parameter value. Introducing the
additional constraints:

a∏
i = 1

ai = 1 (4)

b∏
j = 1

b j = 1 (5)

and

a∏
i = 1

ci j =
b∏

j = 1

ci j = 1 (6)

serves to defineη as the geometric mean of the cell
scale parameter values taken over all the cells; i.e.,

η =
[

b∏
j = 1

a∏
i = 1

ηi j

]1/ab

(7)

Thus, for example, given the following 2× 2 table of
scale parameter values:

η11 = 2 η12 = 4

η21 = 3 η22 = 6

We have,

η = (2× 4× 3× 6)1/4 =
√

12

From the constraints:

a2 = 1

a1

b2 = 1

b1

c11 = 1

c12
= c22 = 1

c21

Equating the numerical values ofηi j to their multiplica-
tive expressions gives:

η11 = a1b1c11

√
12= 2

η12 = a1

b1
· 1

c11

√
12= 4

η21 = b1

a1c11
·
√

12= 3

η22 = c11

a1b1

√
12= 6

The solutions are:

a1 =
√

2/3, a2 =
√

3/2

b1 =
√

1/2, b2 =
√

2

c11 = c12 = c21 = c22 = 1.0

In this instance multiplicative row and column factors
sufficed to account for all theηi j values. The cell spe-
cific ci j values were all unity. For the values in the table
above it may be said that “interaction” is absent.

In general ifci j is unity for all i and j , we say that
interaction does not occur. When interaction is absent
the data may be ‘explained’ by the simpler ‘reduced’
model wherein:

ηi j = ai b jη; (i = 1, . . . , a, j = 1, . . . , b) (8)

Similarly if, in addition, factorB has no effect,ηi j may
be written:

ηi j = ηi = ai η; (i = 1, . . . , a) (9)

While if factor A has no effect:

ηi j = η j = b jη; ( j = 1, . . . , b) (10)

Finally, if there are no row, column or interaction effects
the model simply reduces to:

ηi j = η (11)

3. Fracture tests
A fracture test is presumed to be conducted for each
combination of factor levels. For simplicity we take the
sample sizen to be the same for each cell in thea × b
array. Then items are presumed to be tested until ther th
(r ≤ n) smallest fracture strength in the sample occurs
and that the remainingn−r specimens do not fracture.
Generallyr = n in fracture tests. Life tests on the other
hand are often censored (r < n). The total sample size
is thusabn and the number of failed specimens isabr .
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TABLE I ML estimation equations for factorial experiments under various models

Model ML shape parameter found by solving Equation for ˆη
β̂
i j

ηi j = ai b j ci jη
1

β̂1
+ s..

abr
− 1

ab

a∑
i=1

b∑
j=1

Ti j

vi j
= 0 vi j/r

ηi j = ai biη
1

β̂2
+ s..

abr
− 1

k

a∑
i=1

b∑
j=1

Ti j

vi.v. j
= 0 kvi.v. j/abr

(a= b= 2) (
k ≡

a∑
i=1

b∑
j=1

vi j

vi.v. j

)

ηi j = aiη
1

β̂3
+ s..

abr
− a−1

a∑
i = 1

(∑b
j=1 Ti j∑b
j=1 vi j

)
= 0

b∑
j =1

vi j/br

ηi j = b jη
1

β̂4
+ s..

abr
− b−1

b∑
j = 1

(∑a
i=1 Ti j∑a
i=1 vi j

)
= 0

a∑
i=1

vi j/ar

ηi j = η 1

β̂5
+ s..

abr
−

a∑
i=1

b∑
j=1

Ti j

/
a∑

i=1

b∑
j=1

vi j = 0
a∑

i=1

b∑
j=1

vi j/abr

When the observed strengths within each cell are sorted
from low to high thekth ordered value is denotedXi j(k).

4. Estimation
In [5] the method of maximum likelihood is applied to
estimate the shape parameter and effects under each of
the four models described by Equations 3 and 8–11.
The corresponding shape parameter estimates are de-
notedβ̂1 to β̂5 respectively. For model number 2,β̂2
and the estimates of the effectsai andb j must generally
be found by the simultaneous solution ofa+ b+ 1 non-
linear equations. However, for the special case of the
2× 2 layout (a= b= 2) β̂2 may be solved separately
and then the effect estimates computed. In what follows
we restrict consideration to the case wherea= b= 2.
The estimates of the scale parametersηi j are obtained
by multiplying the relevant effect estimates and the es-
timate of the base level scale parameter.

Table I lists the equations for estimatinĝβ1 to β̂5.
The auxiliary quantities used in this table are defined
as follows:

vi j =
n∑
1

X β̂

i j(k) (12)

vi. =
{

b∏
j = 1

vi j

}1/b

(13)

v. j =
{

a∏
i = 1

vi j

}1/a

(14)

v.. =
{

a∏
i = 1

b∏
j = 1

vi j

}1/ab

(15)

Ti j =
n∑

k= 1

X β̂

i j(k) ln Xi j(k) (16)

si j =
r∑

k= 1

ln Xi j(k) (17)

s.. =
a∑

i = 1

b∑
j = 1

si j (18)

Also listed in Table I is the expression for the maximum
likelihood estimate of the cell scale parameters raised
to a power equal to the shape parameter estimate ap-
propriate to that model. Thus, for example, to estimate
ηi j under the last model of Table I, one computes:

η̂i j =
[

a∑
i = 1

b∑
j = 1

vi j/abr

]1/β̂5

(19)

Except for model 2, the shape parameter estimates ob-
tained under the other models are special cases of the
shape parameter estimate applicable tok groups of
Weibull data under the assumption that the shape pa-
rameter is the same for all groups. This estimate was
first discussed in [8] for the casek= 2. It was gener-
alized in [9] and elaborated upon in the context of the
analysis of rolling contact fatigue experiments in [10].
β̂1, for example, is the estimate ofβ obtained when

each of the cells in the data array is taken as a group.
In this casek= ab. β̂3 results when eachrow is taken
as a group, i.e., the columns are collapsed. In this case
k= a. Correspondingly,β̂4 is obtained by collapsing
rows and treating the data in eachcolumnas a group.
This givesk= b. β̂5 results when all of the data in the
array are treated as a single large group, i.e.,k= 1.0.

5. Test for appropriate model
The full model given by Equation 3 is the least restric-
tive. Under this modelηi j is estimated using only the
data in the cell (i, j) along with the common shape
parameter estimatêβ1 obtained using all of the data
in the entire array. Succeeding models are successively
more restrictive with the last modelηi j = η represent-
ing the case where the entire sample ofabn= 4n items
come from a single Weibull population. When a restric-
tive model is inappropriate, a consequence is that the
shape parameter estimated under that model will tend
to be smaller than it is when an appropriate model is
used.

It is shown in [5] that one may use the ratio of shape
parameter estimates as the basis for a test of whether
a more restrictive model is tenable. For example, if
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interaction is absent,̂β1/β̂2 should be about unity. If
interaction is present however,̂β2 will be relatively
smaller thanβ̂1 and the ratioβ̂1/β̂2 will therefore tend
to be larger than unity.

In the language of hypothesis testing, our so called
null hypothesis would be that interaction is absent, i.e.,

H0: ci j = 1.0 (all i, j)

This hypothesis would be rejected with significance
levelα= 0.05 if

β̂1/β̂2 > (β̂1/β̂2)1−α = (β̂1/β̂2)0.95 (20)

(β̂1/β̂2)0.95 represents the upper 95th percentile of the
distribution of the ratio (̂β1/β̂2) applicable when the
hypothesis is true. It serves as a measure of the relative
rarity of largerβ̂1/β̂2 ratios. Only 5% of the time will a
larger value be encountered due to chance alone when
interaction is absent. If we encounter a larger value we
proclaim that interaction exists and tolerate a 5% risk
that our proclamation is wrong. If the hypothesis of
no interaction were accepted one could proceed to test
β̂1/β̂3 to see if the column effects are also negligible.

6. Monte Carlo results
Monte Carlo simulation was used to produce 10,000
simulated 2× 2 factorial experiments in which the data
in all cells were drawn from a common Weibull popula-
tion. This was done for values of sample sizen and cen-
soring numberr ranging fromn= r = 2 ton= r = 10.
For each simulated experiment the valuesβ̂1− β̂5 were
computed using the equations in Table I. The ratios of
β̂1 to the other values of̂β were calculated for each
experiment and sorted from low to high to determine
the percentiles.

Table II lists the upper 90, 95 and 99% points of these
ratios along with the 5, 10, 50, 90 and 95% points of

v ≡ β̂1/β (21)

TABLE I I Selected percentage points of the distributionsβ̂1/β andβ̂1/β̂k (k= 2−5)

β̂1/β β̂1/β̂2 β̂1/β̂3 andβ̂1/β̂4 β̂1/β̂5

n r 0.05 0.10 0.50 0.90 0.95 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

2 2 0.944 1.069 1.764 3.284 4.019 1.742 2.060 3.160 2.066 2.439 3.729 2.417 2.889 4.538
3 3 0.870 0.960 1.357 2.068 2.362 1.307 1.437 1.762 1.437 1.599 1.942 1.601 1.782 2.220
4 2 0.861 0.979 1.610 3.015 3.690 1.741 2.063 3.132 2.078 2.440 3.701 2.420 2.879 4.412
4 4 0.857 0.929 1.238 1.705 1.903 1.184 1.261 1.461 1.285 1.365 1.576 1.378 1.481 1.714
5 3 0.755 0.832 1.181 1.801 2.049 1.290 1.417 1.726 1.438 1.575 1.912 1.575 1.745 2.169
5 5 0.859 0.920 1.179 1.549 1.683 1.131 1.186 1.305 1.209 1.270 1.417 1.277 1.346 1.522
6 3 0.735 0.810 1.151 1.755 1.997 1.288 1.413 1.722 1.437 1.574 1.906 1.568 1.740 2.165
6 6 0.857 0.913 1.140 1.455 1.560 1.100 1.141 1.236 1.161 1.208 1.322 1.214 1.267 1.396
7 3 0.722 0.796 1.131 1.727 1.967 1.288 1.412 1.721 1.435 1.571 1.904 1.566 1.737 2.153
7 7 0.862 0.912 1.114 1.392 1.489 1.082 1.120 1.212 1.134 1.176 1.272 1.180 1.227 1.339
8 4 0.689 0.745 0.997 1.380 1.538 1.171 1.235 1.421 1.263 1.339 1.529 1.348 1.441 1.655
8 8 0.867 0.911 1.099 1.345 1.433 1.071 1.099 1.164 1.112 1.144 1.219 1.149 1.189 1.273
9 4 0.678 0.733 0.980 1.359 1.515 1.170 1.235 1.418 1.262 1.337 1.527 1.347 1.440 1.655
9 9 0.872 0.911 1.088 1.317 1.391 1.061 1.089 1.149 1.099 1.130 1.199 1.131 1.165 1.243
10 5 0.663 0.710 0.914 1.207 1.318 1.118 1.163 1.272 1.188 1.242 1.371 1.251 1.313 1.462
10 10 0.873 0.913 1.076 1.285 1.353 1.053 1.073 1.125 1.085 1.112 1.169 1.115 1.144 1.215

These latter values are used for setting confidence limits
on the shape parameterβ as in [9]. For 90% confidence
limits one uses:

β̂/v0.95 < β < β̂/v0.05 (22)

A median unbiased estimate of the common shape pa-
rameter may be computed as:

β̂ ′′ = β̂/v0.50 (23)

7. Discriminating power of the tests for row,
column and interaction effects

Additional Monte Carlo studies were performed to eval-
uate the ability of the methodology discussed above to
detect real effects. It is shown in [5] that in the ab-
sence of interaction effects the probability of detecting
a row effect of magnitudea1 (with a2= 1/a1) increases
with the magnitude ofaβ1 . Simulations were run with
n= r = 3 andn= r = 10 using various choices ofa1
and settingη11= η12= a1 and η21= η22= 1/a1. The
probability of failing to detect an effect of magnitude
a1 using a significance levelα= 0.10 is shown in Fig. 1
as a function ofaβ1 . Fig. 2 is a comparable plot giving
the probability of failing to detect an interaction effect
of magnitudec11 as a function ofcβ11. It is seen that
an interaction effect is more likely to be detected than
a row (or column) effect of comparable size. These
figures show that 2× 2 factorial tests withn (and r )
as small as 10 are quite sensitive for brittle materials
wherein the shape parameterβ is typically large. For
example withβ = 10, a multiplicative factor as small as
a1= 1.04 will be detected with a probability of about
65%. (1.0410= 1.5).

8. Numerical examples
To illustrate the analysis on data which are known to
conform to its inherent assumptions, a 2× 2 array was
developed using simulation. Two uncensored samples
of sizen= 5 were generated from a Weibull population

3184



P1: SLM/TKD P2: SNH/SJY P3: PSG 80141-98 May 6, 1999 11:17

Figure 1

Figure 2

havingη= 2 andβ = 2. These data were used to form
the first row of the 2× 2 layout. Two further samples
of sizen= 5 were drawn from the Weibull population
havingη= 1/2 andβ = 2 to form the second row. The
sorted data are tabled below:

0.6297 1.021
0.7960 1.107
0.9468 1.502
2.208 1.945
2.147 2.727

0.1117 0.1999
0.2361 0.3451
0.3038 0.6332
0.3310 0.7275
0.6333 0.7447

In terms of the model these data represent the case
where the base scale parameterη= 1, there is a row
effecta1= 2 anda2= 1/2 but no column or interaction
effect (b1= b2= c11= 1).

The computed estimates of the shape parameter are
listed below:

β̂1 = 2.358

β̂2 = 2.325

β̂3 = 2.222

β4 = 1.362

β5 = 1.354

The ratiosβ̂1/β̂k are tabled below fork= 2−5, along
with the associatedp values as estimated from the
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tabular Monte Carlo distributions of the various ratios
as determined under the null hypothesis.

Effect Shape parameter ratio p

Interaction β̂1/β̂2= 1.014 0.59
Column β̂1/β̂3= 1.061 0.50
Row β̂1/β̂4= 1.731 <0.01
All β̂1/β̂5= 1.741 <0.01

It is seen that the analysis has correctly detected the row
effect and, also, correctly failed to show a significant
column or interaction effect. The ratio for “ALL” will
react to all significant effects. The fact that its magni-
tude is close to the magnitude of the ratio for the row
effect further reflects that only the row effect is sig-
nificant. The estimated parameters assuming only row
effects are meaningful are:

â1 = 1/â2 = 1.847, η̂ = 0.9082, β̂ = 2.358

A 90% confidence interval forβmay be estimated from
Equation 22 using the percentage points ofβ̂1/β listed
in Table II.

1.40= 2.358/1.683< β < 2.358/0.859= 2.75

It is noted that this interval includes the true value
β = 2.0. A median unbiased estimate of the shape

Figure 3 BISGMA with soaking and silanation.

parameter is computed using Equation 23 and the me-
dian value,v0.50, of β̂1/β listed in Table II as:

β̂ ′′1 = 2.358/1.179= 2.0

It is seen that in an unusual coincidence, the median
unbiased estimate is exactly equal to the true value ofβ.

As a second example of the methodology we will
analyze a 2× 2 experiment in which the shear strengths
of ten specimens of a polymer material used in dental
restorations were measured at all four combinations of
the levels of two factors. The material is a 60 : 40 mix of
bisphenol A glycidyl methacrylate: triethylene glycol
dimethacrylate containing 3 vol % of OX50 colloidal
silica (Degussa) used as filler. The factors represented
(1) the presence and absence of silanation (a treatment
designed to bond the silica filler to the polymer matrix)
and (2) whether or not the specimens had been soaked
to saturation in a 50 : 50 mixture of ethanol and water.
The shear strengths in megapascals (MPa) are listed
below for each combination of the factor levels.

Soaked Unsoaked

18.9709 36.7600
19.5638 38.5300
20.1566 40.9100
20.1566 41.5000

Silanated 20.7495 42.6800
21.3423 43.2800
22.5280 43.2800
22.5280 43.8700
22.5280 43.8700
23.1208 44.4600
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Soaked Unsoaked

14.2282 53.9486
14.2282 55.7271
14.8210 56.9128
15.4139 58.0985

Unsilanated 15.4139 58.6913
16.0067 59.8770
16.0067 62.8412
16.5996 64.0269
16.5996 64.0269
17.192 66.3983

The validity of the analysis described in this paper de-
pends upon the premise that the data within each cell
are drawn from Weibull populations having a common
shape parameter. Fig. 3 shows the data within each cell
plotted on coordinates for which Weibull distributed
data are expected to plot as an approximate straight line.
Visually these Weibull “plots” support the assumption
that the data follow the two parameter Weibull distri-
butions.

A formal test of the commonality of the shape para-
meters may be based on the ratio of the largest and
smallest among the four ML shape parameter estimates
computed from the data within each cell. The individ-
ual maximum likelihood shape parameter estimates are
tabled below in the positions corresponding to the data
table above.

β̂ = 17.9 β̂ = 25.4

β̂ = 18.5 β̂ = 17.1

The ratio of the largest to smallest among these four
shape parameter estimates isβ̂max/β̂min= 25.4/17.1=
1.49. Under the assumption thatβ is common to all the
cells,β̂max/β̂min will follow the distribution discussed
in [11] with n= r = 10 andk= 4. Using tables given in
[12] the probability of a ratio larger than 1.49 is found
to be about 0.85. There is thus no evidence to suggest
that the shape parameter varies from cell-to-cell.

The five estimates of the shape parameter obtained
under the five models were computed to be as follows:

β̂1 = 19.018

β̂2 = 6.421

β̂3 = 2.327

β̂4 = 6.419

β̂5 = 2.111

The various ratios and the upper 0.01, 0.05, and 0.10
points of their null distribution are tabled below:

Upper percentage points
Shape parameter
estimates ratio 0.10 0.05 0.01

β̂1/β̂2= 2.96 1.053 1.073 1.1125
β̂1/β̂3= 8.17 1.085 1.112 1.1171
β̂1/β̂4= 2.96 1.085 1.112 1.1171
β̂1/β̂5= 9.013 1.115 1.114 1.215

β̂1/β̂2 is significant indicating that the interaction effect
is real. The interpretation is that the effect of soaking
is greater with unsilanated material than with silanated.
That is, silanation acts to diminish the deleterious effect
of soaking. When the data exhibit a significant interac-
tion effect the other tests become irrelevant. Each cell
of the matrix must be separately estimated subject to
the commonality of the shape parameter. The shape pa-
rameter used to test for a column effect,β̂3, is reduced
in magnitude both by the column effect and the inter-
action effect if there is one. Likewise the row effect
shape parameter is reduced in magnitude both by the
interaction effect and the actual row effect if any. From
the table above the shape parameter ratio for testing the
row effect is numerically about the same (2.96) as the
ratio for the interaction indicating that the row effect
itself is not large. Adopting model 1 as the most appro-
priate characterization of the data, the estimated effects
are calculated to be:

η̂ = 31.086

â1 = 0.983, â2 = 1.017

b̂1 = 0.603, b̂2 = 1.66

ĉ11 = ĉ22 = 1.18, ĉ12 = ĉ21 = 0.847

Using these factor estimates the overall shape parameter
estimates for each cell may be computed to be:

Soaked Unsoaked

Silanated ˆη11= 21.84 η̂12= 42.8
Non-silanated ˆη21= 16.1 η̂22= 62.1

Using the values in Table II forn= r = 10, gives using
Equation 22, the following 90% confidence limits forβ.

14.06= 19.02

1.353
< β <

19.02

0.873
= 21.79

Using Equation 23 the median unbiased estimate of the
common shape parameter is:

β̂ ′′ = 19.02

1.076
= 17.7

It is seen that the procedure has determined the Weibull
shape parameter to within a narrow range of uncertainty
because all 40 data points contribute to its estimation.
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